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Abstract
Rigorous justification of the Hubbard–Stratonovich transformation for the
Pruisken–Schäfer type of parametrizations of real hyperbolic O(m, n)-invariant
domains remains a challenging problem. We show that a naive choice of the
volume element invalidates the transformation and put forward a conjecture
about the correct form which ensures the desired structure. The conjecture is
supported by a complete analytic solution of the problem for groups O(1, 1)

and O(2, 1), and by a method combining analytical calculations with a simple
numerical evaluation of a two-dimensional integral in the case of the group
O(2, 2).

PACS numbers: 05.45.Mt, 02.10.Yn, 11.30.Pb

1. Introduction and formulation of the conjecture

For more than two decades, the nonlinear σ -model methodology has been widely applied to
studies of single electron motions in disordered and chaotic mesoscopic systems [1, 2]. The
method was pioneered by Wegner [3] and further developed by Wegner and Schäfer [4], and
Pruisken and Schäfer [5] in the framework of the replica method used to reduce one-particle
Hamiltonians with microscopic disorder to a nonlinear σ -model. In the early 1980s, Efetov [6]
introduced the supersymmetric variant of the method which avoided the problematic replica
trick and directly led to the supermatrix version of the nonlinear σ -model. Since then this
latter nonlinear σ -model has also been successfully applied to a variety of problems in the
framework of random matrix approach to chaotic scattering [7, 8], quantum chromodynamics
[9], as well as a few other fields of physics.

A standard derivation of the nonlinear σ -models requires to use at some point the so-called
Hubbard–Stratonovich transformation:

Cn e− 1
2 TrÂ2 =

∫
DR̂ exp

(
−1

2
Tr R̂2 − iTr R̂Â

)
, (1.1)
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where R̂ and Â are n × n matrices and Cn is a normalization factor independent of the matrix
Â. When matrices R̂ and Â are, for example, complex Hermitian, the volume element can
be chosen as DR̂ ∝ ∏

i�j d[Re Rij ]d[Im Rij ], and the above integral amounts to a product of
standard Gaussian integrals over independent degrees of freedom, the identity (1.1) following
immediately. The same method works obviously for the real symmetric matrices. On the
other hand, in these simple cases we also have a freedom to go to ‘polar’ coordinates in the
standard way. For example, for the complex Hermitian case [10]

R̂ = Û−1diag(p1, . . . , pn)Û , DR ∝ dµH (U)dP�2[P̂ ], (1.2)

where Û ∈ U(n) is a unitary matrix of eigenvectors and P̂ = diag(p1, . . . , pn) is the real
diagonal matrix of the associated eigenvalues of R̂, with dµH (U) being the corresponding
invariant Haar measure on the unitary group and �[P̂ ] = ∏

i<j (pj − pj ) standing for the
Vandermonde determinant factor. Similarly, for the real symmetric matrices

R̂ = Ô−1P̂ Ô, DR ∝ dµH (O)dP |�[P̂ ]|, (1.3)

with Ô ∈ O(n) being an orthogonal matrix.
In the problems of interest in electronic transport and random matrix theory the structure of

the matrices R̂ and Â is however restricted by the underlying symmetries of the system, and is
rather non-trivial, see [11] for a review. For the simplest choice of the disordered Hamiltonian
corresponding to a system with broken time-reversal symmetry, one of the legitimate choices
of the integration domain for R is due to Schäfer and Wegner [4]:

R̂ = λT̂ T̂ † + iP̂ , (1.4)

where the matrices T̂ must be chosen in the pseudounitary group: T̂ ∈ U(n1, n2). The
matrices P̂ are Hermitian block-diagonal: P̂ = diag

(
P̂ n1 , P̂ n2

) = P̂ †, and λ > 0 is an
arbitrary positive number. For Hamiltonians respecting time-reversal symmetry the integration
domain R̂ is essentially of the same form, but with matrices P̂ real symmetric block-diagonal
and the matrices T̂ taken as elements of the real pseudoorthogonal group: T̂ ∈ O(n1, n2).

Although the Schäfer–Wegner parameterization of the integration manifold is correct,
an accurate verification of the main formula (1.1) is not at all trivial and was provided only
recently [11]. Actually, this type of parameterization has never been widely used in the
physical literature. Instead, an alternative parameterization due to Pruisken and Schäfer [5]
has been assumed, tacitly or explicitly, in the vast majority of applications:

R̂ = T̂ −1P̂ T̂ , DR = dµH (T ) dP1 dP2�
2[P̂ ]. (1.5)

Here we assumed the case of broken time-reversal symmetry, T̂ ∈ U(n1, n2) and P̂ =
diag

(
P̂ n1 , P̂ n2

)
, with P̂ n1 and P̂ n2 being real diagonal, dµH (T ) being the invariant Haar

measure on the pseudounitary group and �[P̂ ] = ∏
i<j (pj − pj ) is the Vandermonde

determinant factor. Apparently, this parameterization is a complete analogue of that in formula
(1.2), specified for the pseudounitary symmetry.

Similarly, one expects that a natural analogue of (1.3) for the preserved time-reversal
Hamiltonians and emerging real-hyperbolic domain should be

R̂ = T̂ −1P̂ T̂ , DR = dµH (T )dP1 dP2|�[P̂ ]|, (1.6)

where the time T̂ ∈ O(n1, n2) is the corresponding pseudo-orthogonal matrices.
To the best of our knowledge, the validity of the Hubbard–Stratonovich transformation

with the Pruisken–Schäfer choice of the integration domain has not been carefully checked, but
rather taken for granted. In fact, the simplest version of the ‘deformation of contour’ argument
used to verify the transformation for the Schäfer–Wegner domain fails for the Pruisken–Schäfer
choice [11], and this raised legitimate doubts on its validity in general, see also [12].
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Given the widespread use of the Pruisken–Schäfer parameterization, as well as known
technical advantages of working with it in some microscopic models, the situation clearly calls
for further analysis. To this end, a rigorous proof of the validity of the Hubbard–Stratonovich
transformation for the general pseudounitary Pruisken–Schäfer domain (1.5) was given for the
first time by one of the authors [13]. In the same paper, a variant of the Hubbard–Stratonovich
transformation for disordered systems with an additional chiral symmetry was also
provided.

On the other hand, the problem of verifying Hubbard–Stratonovich transformation for the
general real pseudoorthogonal Pruisken–Schäfer domain (1.6) turned out to be much more
challenging due to serious technical difficulties to be discussed later on in the text of the paper.
Only the simplest, yet non-trivial case O(1, 1) was managed successfully in [13], and we
summarize the results of that study below. The integration domain on the right-hand side of
equation (1.1) is given explicitly by

R̂ = T̂ −1P̂ T̂ , (1.7)

where

T̂ =
(

cosh θ sinh θ

sinh θ cosh θ

)
∈ O(1, 1)

O(1) × O(1)
and P̂ = diag(p1, p2). (1.8)

The matrices Â in equation (1.1) have the following form:

Â =
(

a1 −a

a −a2

)
, with a1 > 0, a2 > 0, |a| <

√
a1a2. (1.9)

As has been shown in [13], the desirable form (1.1) of the Hubbard–Stratonovich
transformation is only possible after one makes the following choice of volume element
on the integration manifold:

dR̂ = (p1 − p2) dp1 dp2 dθ, (1.10)

whereas the would-be ‘natural’ choice of the non-negative volume element

dR̂ = |p1 − p2|dp1 dp2 dθ,

as in (1.6), cannot yield a Gaussian function on the left-hand side of (1.1).
In the present paper we continue that study by considering two more specific cases,

O(2, 1) and O(2, 2), and investigating in detail the validity of the Hubbard–Stratonovich
transformation for the corresponding real hyperbolic domains. Note that for practical needs
of the theory of disordered systems O(2, 2) is the most important case related, in the
supersymmetric version, to the basic object of the theory, the so-called two-point correlation
function of resolvents of the random Schroedinger operator, see e.g. [1, 11].

In both O(2, 1) and O(2, 2) cases we are able to show that the naive choice of the
measure (1.6) is never possible, but the Hubbard–Stratonovich transformation (1.1) can be
saved provided we make a suitable alternative choice of DP̂ . These examples naturally suggest
to put forward the following conjecture on the correct form of the Hubbard–Stratonovich
transformation on a general O(m, n)-invariant Pruisken–Schäfer domain. Define

R̂ = T̂ −1P̂ T̂ , P̂ = diag(P̂ 1, P̂ 2) = diag (p11, . . . , p1m, p21, . . . , p2n) (1.11)

and the volume element

DR = dµH (T )DP̂ , DP̂ = |�[P̂ 1]| · |�[P̂ 2]|
m∏

i=1

n∏
j=1

(p1i − p2j ), (1.12)

where |�[P̂ ]| is the absolute value of the Vandermonde determinant and dµH (T̂ ) stands for the
invariant measure on O(m, n). Further assume that the real matrix Â is of the form Â = Â+L̂,
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where Â+ is positive definite and L̂ is the signature matrix L̂ appearing in the definition of the
pseudoorthogonal group O(m, n)1. Then the Hubbard–Stratonovich transformation over the
Pruisken–Schäfer type of real hyperbolic domain is given by∫

DR̂ exp

(
−1

2
Tr R̂2 − iTr R̂Â

)

=
∫ ∞

−∞
DP̂ exp

⎛
⎝−1

2

⎡
⎣ m∑

i=1

p2
1i +

n∑
j=1

p2
2j

⎤
⎦
⎞
⎠∫

O(m,n)

dµH (T̂ ) e−iTrT̂ −1P̂ T̂ Â

= const e− 1
2 TrÂ2

. (1.13)

Formula (1.13) is the central message of our work. The crucial difference of the choice
(1.12) from the naive choice of the measure (1.6) is the absence of modulus for the factors∏m

i=1

∏n
j=1(p1i − p2j ). This forces the volume element to change sign inside the integration

domain, in contrast to the conventional measures (densities) which are always positive as in,
e.g., equation (1.3). Such a feature does not however in any way invalidate our Hubbard–
Stratonovich formula, which should be interpreted as follows. The actual sign of DR̂ is
determined by the inequalities between p1’s and p2’s. An ordered sequence of p1’s and p2’s
thus defines a sub-domain of R̂ on which the sign of DR̂ is fixed. Without loss of generality,
we can assume p11 > p12 > · · · > p1m and p21 > p22 > · · · > p2n. Then it is clear that the
domain of integration in R̂ is a union of altogether (m + n)!/m!n! such disjoint sub-domains.
Labelling a particular choice of the sub-domain of this sort by Dσ and defining sgn(σ ) to be
the sign of the volume element DR̂ on Dσ , the left-hand side of the integration formula we
discuss is given by∫

DR̂ exp

(
−1

2
Tr R̂2 − iTr R̂Â

)
=
∑

σ

sgn(σ )

∫
Dσ

|DR̂| exp

(
−1

2
Tr R̂2 − iTr R̂Â

)
.

(1.14)

Interpreting our formula in this way, we always integrate over each sub-domain Dσ with
the well-defined positive measures |DR̂|, but the lhs of equation (1.13) is given by an alternating
sum of integrals on the disjoint sub-domains of R̂. We believe that this coordinated change of
sign is absolutely necessary to ensure the Gaussian form of the result of the integration, the
conviction being based on the example of [13] and the results of the current paper.

We consider verification of this conjecture, as well as the discovery of a general mechanism
which ensures its validity to be a challenging problem reserved for a future research2.

2. Verification of the conjecture for the O(2, 1) case

In this section, we consider the Pruisken–Schäfer type of parameterization of integration
domain (1.11) with T̂ being an element of the real pseudoorthogonal group O(2, 1). The real
matrix Â in equation (1.13) is assumed to be of the form Â = Â+L̂, where Â+ is positive
definite and L̂ is the signature matrix L̂ = diag(1, 1,−1). As mentioned above, such matrices
Â can always be diagonalized as Â = T̂ −1�T̂ , with T̂ ∈ O(2, 1) and � is a real diagonal
matrix. By exploiting the invariance of the Haar measure we can safely choose Â to be
diagonal, as this choice obviously does not change the result of the integration.

1 Such matrices can always be brought to a real diagonal form by O(m, n) rotations, see e.g. appendix B of the paper
[15].
2 A method of proving the validity of the above conjecture in the general case O(m, n) has recently been proposed
by M R Zirnbauer and the present authors and will be published elsewhere [16].
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Implementing the Pruisken–Schäfer parameterization, the integral on the right-hand side
of equation (1.13) is of the form

I
O(2,1)
HS =

∫
DR̂ exp

(
−1

2
Tr R̂2 − iTr R̂Â

)

=
∫ ∞

−∞
DP̂ exp

(
−1

2

3∑
i=1

p2
i

)∫
O(2,1)

dµ(T̂ ) e−iTrT̂ −1P̂ T̂ Â, (2.1)

where P̂ = diag(p1, p2, p3) and dµ(T̂ ) is the invariant Haar measure on O(2, 1). The crucial
point is that we have to choose the volume element DP̂ to be, cf equation (1.12),

DP̂ = |p1 − p2|(p1 − p3)(p2 − p3) dp1 dp2 dp3. (2.2)

We are going to demonstrate that it is only this choice that validates the Hubbard–Stratonovich
transformation for our choice of the hyperbolic domain.

Note that the integral over the pseudoorthogonal group O(2, 1) on the right-hand side
of equation (2.1) is of the type of the Harish-Chandra–Itzykson–Zuber integral. Although
integrals of this type have been known long ago for unitary groups [17] and extended more
recently to pseudounitary groups [18], their analogues for (pseudo)orthogonal groups, which
is relevant here, remains largely an open problem in mathematical physics, although a few
interesting insights were obtained very recently [19, 20].

2.1. Particular example of the O(2, 1) Hubbard–Stratonovich transformation

To elucidate main points of the calculation we first consider a special choice of the (diagonal)
matrix Â, that is

Â = diag(x, x, z) �⇒ e− 1
2 TrÂ2 = e− 1

2 (2x2+z). (2.3)

Since ÂL̂ = diag(x, x,−z) > 0 according to our assumption, we have to require x > 0 > z.
The calculations will be simpler as such Â effectively replaces the integration over the

whole group O(2, 1) with one over the non-compact Riemannian symmetric space

O(2, 1)

O(2) × O(1)

∼= SO(2, 1)

S[O(2) × O(1)]
. (2.4)

Denote by dµ(Ŝ) the O(2, 1) invariant measure on the non-compact Riemannian symmetric
space G/H , with G = O(2, 1) and H = O(2) × O(1). For our special choice of the matrix
Â we obviously have∫

O(2,1)

dµ(T̂ ) e−iTrT̂ −1P̂ T̂ Â =
∫

G/H

dµ(Ŝ) e−iTrŜ−1P̂ ŜÂ, (2.5)

so that equation (2.1) assumes the following form:∫
DR̂ e− 1

2 Tr R̂2−iTr R̂Â =
∫ ∞

−∞
DP̂ exp

(
−1

2

3∑
i=1

p2
i

)∫
G/H

dµ(Ŝ) e−iTrŜ−1P̂ ŜÂ. (2.6)

To perform the integration over the coset space G/H it is convenient to parameterize
G/H with the projective coordinates (Z,ZT ). To this end, we introduce a 2 × 1 real matrix
Z as

Z =
(

z1

z2

)
with the constraint 1 − ZT Z � 0, (2.7)
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in terms of which the matrices Ŝ on G/H are given by

Ŝ =
(

(1 − ZZT )−
1
2 Z(1 − ZT Z)−

1
2

ZT (1 − ZZT )−
1
2 (1 − ZT Z)−

1
2

)
. (2.8)

It is direct to check that Ŝ−1(Z,ZT ) = Ŝ(−Z,−ZT ). The invariant measure dµ(Ŝ) in
projective coordinates can be calculated in the standard way [21] and is given by

dµ(Ŝ) = dZ dZT

(1 − ZT Z)
3
2

, (2.9)

where dZ dZT = dz1 dz2 and the integration domain is as specified in (2.7). Make the
following change of variables:{

z1 = r cos θ

z2 = r sin θ,
r ∈ [0, 1] and θ ∈ [0, 2π ]. (2.10)

The integration on the right-hand side of equation (2.5) can be written as∫ 1

0

rdr

(1 − r2)
3
2

∫ 2π

0
dθ exp

i

2

{
r2

1 − r2
(x − z)(p1 − p2) cos 2θ +

x − z

1 − r2
(p1 + p2 − 2p3)

+ [x(p1 + p2 + 2p3) + z(p1 + p2)]

}
. (2.11)

The integral over θ yields the standard Bessel functions in view of
∫ π

0 dφ eiβ cos φ = πJ0(β),

and introducing a new variable t = r2

1−r2 , we rewrite (2.11) as

ei(x(p1+p2)+zp3)

∫ ∞

0

dt√
1 + t

J0

[
t

2
(x − z)(p1 − p2)

]
exp

(
it

2
(x − z)(p1 + p2 − 2p3)

)
. (2.12)

Now we need to substitute equation (2.12) into the right-hand side of equation (2.6) and to
integrate over P̂ , that is

I
O(2,1)
HS =

∫ ∞

0

dt√
1 + t

∫ ∞

−∞
DP̂ exp

{
−1

2

3∑
i=1

p2
i + i(x(p1 + p2) + zp3)

+
it

2
(x − z)(p1 + p2 − 2p3)

}
J0

[
t

2
(x − z)(p1 − p2)

]
. (2.13)

After a straightforward, but lengthy calculation we arrive at the following result:

I
O(2,1)
HS =

√
2π

32
F [(x − z)2] e− 1

2 (2x2+z2), (2.14)

where

F(a) =
∫ ∞

0

dt√
1 + t

exp

(
−1

2
(t2 + t)a

)
[1 − a(2t2 + 3t + 1)]. (2.15)

Note that the expression (2.14) already contains the Gaussian factor of precisely the form
required by (2.3). Unfortunately, that factor is multiplied with a function F [(x − z)2]
dependent on the combination a = (x − z)2, the fact seemingly incompatible with the
Hubbard–Stratonovich transformation. Miraculously enough, this factor is an a-independent
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constant! To verify this, we define y = √
1 + t , and carry out the integral explicitly:

F(a) =
∫ ∞

0

dt√
1 + t

exp

(
−1

2
(t2 + t)a

)
[1 − a(2t2 + 3t + 1)]

=
∫ ∞

1
dy exp

(
−a

2
(y4 − y2)

)
[1 − a(2y4 − y2)]

= 1 − lim
y→∞ y exp

(
−ay2(y2 − 1)

2

)
= 1. (2.16)

At the last step, we used the fact that a is strictly positive, as the case a = 0 should be
excluded from the very beginning. Indeed, a = 0 implies x = z, contradicting to the original
requirement x > 0 > z.

2.2. General calculation for the O(2, 1) case

Now we are ready to present the complete proof of the Hubbard–Stratonovich transformation
over O(2, 1) domain. In the general case, we have Â = diag(x1, x2, z) = Â1 + Â2 where
Â1 = diag(x, x, z) is the part considered in the previous example and Â2 = diag(w,−w, 0).
Here we defined the variables x = (x1 + x2)/2, w = (x1 − x2)/2. Our starting point is again
equation (2.1), but we now have

I
O(2,1)
HS =

∫
DR̂ exp

(
−1

2
Tr R̂2 − iTr R̂Â

)

=
∫ ∞

−∞
DP̂ exp

(
−1

2

3∑
i=1

p2
i

)∫
G/H

e−iTrŜ−1P̂ ŜÂ1 dµ(Ŝ)

∫
H

dµ(Ĥ ) e−iTrŜ−1P̂ Ŝ[Ĥ Â2Ĥ
−1],

(2.17)

where we assume G = O(2, 1),H = O(2) × O(1) and S = G/H as before.
The integration over H goes effectively over the group SO(2) and the corresponding

matrices can be parameterized in a standard way as H = ( cos φ sin φ

− sin φ cos φ

)
. Using the same

parameters for the coset matrices Ŝ as in the previous section, we then find

Tr Ŝ−1P̂ ŜĤ Â2Ĥ
−1 = A cos 2φ + B sin 2φ, (2.18)

where

A = w

4(1 − r2)

{[
(1 +

√
1 − r2)2 + 2r2 cos 2θ + cos 4θ(1 −

√
1 − r2)2

]
p1

+
[
2r2 cos 2θ − (1 +

√
1 − r2)2 − cos 4θ(1 −

√
1 − r2)2]p2 − 4r2 cos 2θp3

}
B = −w

4(1 − r2)

{[
2r2 sin 2θ + sin 4θ(1 −

√
1 − r2)2

]
p1

+
[
2r2 sin 2θ − sin 4θ(1 −

√
1 − r2)2

]
p2 − 4r2 cos 2θp3

}
. (2.19)

The integration over φ is easily performed according to the formula

J0(
√

A2 + B2) = 1

π

∫ π

0
dφ exp(i cos φA + i sin φB), (2.20)

so that ∫
H

dµ(Ĥ ) e−iTrŜ−1P̂ ŜĤ Â2Ĥ
−1 = J0(

√
A2 + B2). (2.21)
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This should be inserted into equation (2.17), and remembering equations (2.11)–(2.13),
we arrive at

I
O(2,1)
HS =

∫ ∞

0

dt√
1 + t

∫ ∞

−∞
DP̂

∫ 2π

0
dθ exp

{
−1

2

3∑
i=1

p2
i + i(x(p1 + p2) + zp3)

+
it

2
(x − z)(p1 + p2 − 2p3) +

it

2
(x − z)(p1 − p2) cos θ

}
J0(

√
A2 + B2), (2.22)

where again DP̂ is given by equation (2.2).
Note that variable ‘w’ responsible for the difference from the example considered in the

previous section enters the formula only via the combination
√

A2 + B2. A way of evaluating
the above integral for w 	= 0 is to expand the Bessel function in Taylor series with the nth
term proportional to w2n, to integrate each term separately and then re-sum the series. A
straightforward implementation of this program is however not immediate, and necessary
steps of the proof are given in appendix A where it is shown that

I
O(2,1)
HS = const exp

[
−x2 − w2 − z2

2

]
= const exp

[
−1

2

(
x2

1 + x2
2 + z2)], (2.23)

in precise agreement with the structure required by the Hubbard–Stratonovich transformation.
To summarize, we have demonstrated that for any Â = T̂ 0 diag(x1, x2, z)T̂

−1
0 and

T̂ 0 ∈ O(2, 1) the identity∫
DR̂ exp

(
−1

2
Tr R̂2 − iTr R̂Â

)
= const e− 1

2 TrÂ2
(2.24)

holds, provided the volume element DP for the P̂ integral is chosen in accordance with
equation (2.2).

For the sake of comparison, one may try to repeat the above calculation with the ‘naive’
choice of measure DP̂ = |�(P̂ )|∏3

i=1 dpi instead of equation (2.2). We show in appendix
B that such a choice invalidates the Hubbard–Stratonovich transformation. As another
comparison, we also provide similar calculations in appendix C for the compact counterpart
of this Pruisken–Schäfer domain corresponding to the group O(3).

3. Results for the O(2, 2) case

In this section, we carry out the detailed calculation for the Hubbard–Stratonovich
transformation over the O(2, 2) Pruisken–Schäfer domain. As the calculation turns out to
be quite technically cumbersome, we restrict ourselves with the simplest non-trivial choice
Â = diag(x, x, z, z), with x > 0 > z. Consequently, the integration domain T̂ = O(2, 2)

effectively reduces to the non-compact Riemannian symmetric space (coset space)

O(2, 2)

O(2) × O(2)

∼= SO(2, 2)

S[O(2) × O(2)]
. (3.1)

Parameterization of G/H , where G = SO(2, 2) and H = S[O(2) × O(2)], with the
projective coordinates Z and ZT is again in the form of equation (2.8) with Z and ZT being
real 2 × 2 matrices chosen in such a way ensuring that the matrix 1 −ZT Z is positive definite:

Z =
(

z1 z2

z3 z4

)
with 1 − ZT Z � 0. (3.2)
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We aim to prove the validity of the Hubbard–Stratonovich transformation with the
Pruisken–Schäfer parameterization (1.5), where T ∈ O(2, 2) and P̂ = diag(p1, p2, p3, p4).
To this end, we need to demonstrate that the following integral

I
O(2,2)
HS =

∫
DR̂ exp

(
−1

2
Tr R̂2 − iTr R̂Â

)

=
∫ ∞

−∞
DP̂ exp

(
−1

2

4∑
i=1

p2
i

)∫
O(2,2)

dµ(T̂ ) e−iTrT̂ −1P̂ T̂ Â

=
∫ ∞

−∞
DP̂ exp

(
−1

2

4∑
i=1

p2
i

)∫
G/H

dµ(Ŝ) e−iTrŜ−1P̂ ŜÂ (3.3)

is, up to a constant factor, a product of Gaussian factors. The invariant measure dµ(Ŝ) here is
calculated in the standard way and is equal to [21]

dµ(Ŝ) = dZ dZT

det(1 − ZT Z)2
, (3.4)

where dZ dZT = dz1 dz2 dz3 dz4.
To carry out the integration over the coset space we introduce the polar coordinates

parameterization for real matrices Z. This amounts to diagonalizing Z by two orthogonal
rotations as

Z = O1

(
r 0
0 s

)
O2, where r, s ∈ (−∞,∞), O1,O2 ∈ SO(2). (3.5)

A standard calculation (appendix D) shows that the Jacobian induced by changing variables
from Z,ZT to the polar coordinates is simply |r2 − s2|. We have accordingly

dZ dZT = |r2 − s2| dr ds dµ(O1) dµ(O2), (3.6)

where dµ(O1) and dµ(O2) are the invariant Haar measure of SO(2). Using the polar
coordinates the integral over coset space takes the form∫

G/H

dµ(Ŝ) e−iTrŜ−1P̂ ŜÂ

=
∫

D(r, s)

∫
SO(2)

dµ(O1) exp

{
iTr

[
O1

(
x−zr2

1−r2 0

0 x−zs2

1−s2

)
O−1

1

(
p1 0
0 p2

)]}

×
∫

SO(2)

dµ(O2) exp

{
iTr

[
O−1

2

(
z−xr2

1−r2 0

0 z−xs2

1−s2

)
O2

(
p3 0
0 p4

)]}
, (3.7)

where we denoted D(r, s) = |r2 − s2|dr ds/(1 − r2)2(1 − s2)2.
The two integrals over O(2) group manifold in equation (3.7) are easily carried out using

the formula∫
SO(2)

dµ(O)exp

{
iTrO

(
a1 0
0 a2

)
O−1

(
b1 0
0 b2

)}

= exp

[
i

2
(a1 + a2)(b1 + b2)

]
J0

[
1

2
(a1 − a2)(b1 − b2)

]
. (3.8)

Introducing at the next step the variables u = 1
1−r2 and v = 1

1−s2 , we rewrite the resulting
integral in equation (3.7) as
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eix(p3+p4)+iz(p1+p2)

∫ ∞

1

|u − v| du dv√
u(u − 1)

√
v(v − 1)

exp

{
i

2
(x − z)(p1 + p2 − p3 − p4)(u + v)

}

× J0

[
1

2
(x − z)(p1 − p2)(u − v)

]
J0

[
1

2
(x − z)(p3 − p4)(u − v)

]
. (3.9)

Now we have to perform the integration over variables in P̂ . As in the previous section, the
crucial point is to choose the volume element DP̂ in accordance with our main conjecture,
that is

DP̂ = |p1 − p2|(p1 − p3)(p1 − p4)(p2 − p3)(p2 − p4)|p3 − p4|
4∏

i=1

dpi. (3.10)

The remaining steps are lengthy but straightforward. After a few variable changes we arrive
at

I
SO(2,2)
HS = π

128
F[a] exp[−x2 − z2], (3.11)

with a ≡ x − z and the function F[a] given in terms of a double integral as

F[a] =
∫ ∞

1
dt exp

(
−a2(t2 − 1)

4

)∫ (t−1)2

0

1
4a4t2(t2 − v) − a2t2 + 1√
[(t + 1)2 − v][(t − 1)2 − v]

e− a2v
4 dv. (3.12)

Integrating over v and defining a new variable x = t+1
2 , we get

F[a] = π

128

∫ ∞

1
dx e−a2(x2−x) x − 1

x

{
[a2(2x − 1)2 − 2]2

×	1

[
1,

1

2
,

3

2
,

(
x − 1

x

)2

,−a2(x − 1)2

]

− 8

3
a4(x − 1)2(2x − 1)2	1

[
2,

1

2
,

5

2
,

(
x − 1

x

)2

,−a2(x − 1)2

]}
, (3.13)

where 	1 is the degenerate hypergeometric series of two variables defined as [22]

	1[α, β, γ, x, y] =
∞∑

m,n=0

(α)m+n(β)m

(γ )m+nm!n!
xmyn. (3.14)

From equation (3.11) we see that only if the factor F[a] is independent of its argument
a ≡ x − z the whole expression I

SO(2,2)
HS can be in the desired Gaussian form. It needs only

a few lines of Maple or Mathematica code to numerically check that actually F[a] ≡ 1, see
figure 1.

Unfortunately, we were not able to find a way of verifying this miraculous identity
analytically, as we managed to do in the previous case of O(2, 1) integral. Nevertheless, we
do not think that the numerical data leave any doubt in the validity of our claim.

In conclusion, the above calculation shows that for Â = T̂ 0 diag(x, x, z, z) T̂ −1
0 and

T̂ 0 ∈ O(2, 2), ∫
DR̂ exp

(
−1

2
Tr R̂2 − iTr R̂Â

)
= const e− 1

2 TrÂ2
, (3.15)

provided measure for P̂ integral is chosen to be equation (3.10).
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Figure 1. Function F(a) = 1 is a constant which does not depend on a.

It is again interesting to check what will be the result if we choose dP̂ = |�(P̂ )|∏4
i=1 dpi

instead of equation (3.10). It is shown in appendix E that this choice will make the Hubbard–
Stratonovich identity invalid.
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Appendix A. Proof of equation (2.23)

Introducing the set of new variables

a = 1
2 (p1 − p2), b = 1

2 (p1 + p2), c = p3 (A.1)

and defining t = r2

1−r2 , we can rewrite equation (2.22) as

I
O(2,1)
HS =

∫ ∞

0

dt√
1 + t

∫ ∞

0
da

∫ ∞

−∞
db dc a[(b − c)2 − a2] exp

{
−a2 − b2 − c2

2

+ i[x(b + c) + zb] + i cos 2θta(x − z) + i(1 + t)(x − z)(b − c)

}
J0(

√
A2 + B2),

(A.2)

where we have used equation (2.2). Next, we verify that

A2 + B2 = w2{t2(b − c)2 + 2t (t + 2) cos 2θa(b − c) + a2[t2 cos2 2θ + 4(t + 1)]}
= w2{[t (b − c) + a(t + 2) cos 2θ ]2 + a2[4(t + 1) sin2 2θ ]}
= C2 + D2, (A.3)

where we defined

C = w[t (b − c) + a(t + 2) cos 2θ ]

D = 2wa
√

t + 1 sin 2θ.
(A.4)
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This allows us to write (cf (2.20))

J0
(√

A2 + B2
) = 1

π

∫ π

0
dφ exp(i cos φC + i sin φD). (A.5)

Using this representation of the Bessel function in equation (A.2) and defining y = 1/
√

1 + t ,
we can readily carry out integrals over a, b, c and θ , and get

I
O(2,1)
HS = exp

[
−x2 − z2

2

]
F(w), (A.6)

where we defined

F(w) =
∫ ∞

1
dy

∫ π

0
dφ exp{−[w2 − (x − z)2]y2 − [w cos φ(y2 − 1) + (x − z)y2]2}.

(A.7)

Note that although the above integral formally seems to depend on both w and (x−z), we shall
see below that it is a function of w only and is actually independent of the second combination.

To calculate F(w) we find it convenient to apply first the standard Hubbard–Stratonovich
transformation and ‘linearize’ the second term in the exponent by introducing an auxiliary
Gaussian integral:

F(w) =
∫ ∞

1
dy

∫ π

0
dφ

∫ ∞

−∞
dh exp{−[w2 − (x − z)2]y2 − h2

+ 2ih[w cos φ(y2 − 1) + (x − z)y2]}. (A.8)

Integration over φ yields the Bessel function which can be expanded in its Taylor series, and
the Gaussian integral over h can be performed. In this way, we find

F(w) = const
∞∑

n=0

w2n

∫ ∞

1
dy e−(x−z)2(y4−y2)

×
{[

1

y2
− 2(1 − 2y2)(x − z)2

]
Cn + 2(1 − 2y2)Cn−1

}
(A.9)

where we defined for n � 0

Cn =
n∑

m=0

(−)n−m

(n − m)!
y2(n−m)(y2 − 1)2m (2m)!

m!m!

m∑
k=0

(−)k

4kk!

[(x − z)y2]2m−2k

(2m − 2k)!
(A.10)

and Cn = 0 for n < 0. In particular, the definition above implies

Cn

∣∣∣∣
y=1

= (−)n

n!
. (A.11)

F(w) can be found as we are now able to perform the integrations on the right-hand side of
equation (A.9) as∫ ∞

1
dy e−(x−z)2(y4−y2)

{[
1

y2
− 2(1 − 2y2)(x − z)2

]
Cn + 2(1 − 2y2)Cn−1

}

= − e−(x−z)2(y4−y2)

y

[
Cn + y2(y2 − 1)

n−1∑
i=0

an,iCi

]∣∣∣∣∣
∞

y=1

= (−)n

n!
. (A.12)
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Here an,i’s are coefficients satisfying the following recursive relations:

an,n−1 = 2

n
, and an.i = −1

n
an−1,i , i = 0, . . . , n − 2, a1,0 = 2. (A.13)

In the last step of equation (A.12) we used the fact x − z > 0. We finally see that
equation (A.12) implies the desired Gaussian expression

F(w) = const e−w2
. (A.14)

Finally, substituting F(w) ∝ e−w2
back into equation (A.6) completes our proof of

equation (2.23).

Appendix B. Calculation with the naive choice of the volume element DP̂ for the
O(2, 1) case

In this appendix, we show that the Hubbard–Stratonovich transformation for the O(2, 1)

Pruisken–Schäfer domain is invalid if the volume element is chosen to be DP̂ =
|�(P̂ )|∏3

i=1 dpi .
Starting from equation (2.13), we make a change of integration variables as in

equation (A.1). Then we write equation (2.13) as

IO(2,1)
HS =

∫ ∞

0

dt√
1 + t

∫ ∞

−∞
DP̂

× exp

(
−a2 − b2 − c2

2
+ i(2xb + zc) + it (x − z)(b − c)

)
J0 [t (x − z)a] , (B.1)

where

DP̂ = 2|a((b − c)2 − a2)| da db dc. (B.2)

We rewrite the above integral as

IO(2,1)
HS = IO(2,1)

HS,1 + IO(2,1)
HS,2 , (B.3)

where we defined

IO(2,1)
HS,1 =

∫ ∞

0

dt√
1 + t

∫ ∞

−∞
2|a|((b − c)2 − a2) da db dc

× exp

(
−a2 − b2 − c2

2
+ i(2xb + zc) + it (x − z)(b − c)

)
J0 [t (x − z)a] (B.4)

and

IO(2,1)
HS,2 =

∫ ∞

0

dt√
1 + t

∫ |b−c|

0
4|a|(a2 − (b − c)2) da

∫ ∞

−∞
db dc

× exp

(
−a2 − b2 − c2

2
+ i(2xb + zc) + it (x − z)(b − c)

)
J0 [t (x − z)a] . (B.5)

Let us stress that it is the contribution IO(2,1)
HS,2 which encapsulates the difference between

the definition DP̂ = |�(P̂ )|∏3
i=1 dpi which is positive definite and equation (2.2) which is

sign indefinite. Such a term has cancelled out when the volume element was chosen to be
equation (2.2). The first contribution IO(2,1)

HS,1 is nothing but I
O(2,1)
HS as calculated in section 2,

and we proved that it in the Gaussian form

IO(2,1)
HS = const exp

[
−1

2
(2x2 + z2)

]
+ IO(2,1)

HS,2 . (B.6)
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In the remaining part of this appendix we will demonstrate that the first contribution
IO(2,1)

HS,2 is not in a Gaussian form, thus invalidating the Hubbard–Stratonovich transformation.
Define m = b + c, n = b − c and integrate over m. We get

IO(2,1)
HS,2 = 2

√
6π

3
exp

[
−1

6
(2x + z)2

] ∫ ∞

−∞
dn n4 exp

{
−
(

1

3
+ a2

)
n2 + in(x − z)

(
2

3
+ t

)}

×
∫ 1

0
da

∫ ∞

0

dt√
1 + t

a(a2 − 1)J0

[
t (x − z)na

]
. (B.7)

It is clear that IO(2,1)
HS,2 will be in the desired Gaussian form if the integral part of the above

formula is ∝ exp(−(x −z)2/3). To check this, it is sufficient to consider a special case x → z,
i.e. |x − z| � 1. In this limit, we can approximate the integral by setting the argument of the
Bessel function in the integrand to zero. This gives

IO(2,1)
HS,2 ∝ e− (2x+z)2

6

∫ ∞

0

dt√
1 + t

∫ ∞

−∞
dn n4 exp

{
−1

3
n2 + in(x − z)

(
2

3
+ t

)}

×
∫ 1

0
da a(a2 − 1) exp(−n2a2). (B.8)

The integral over a is simply∫ 1

0
da a(1 − a2) exp(−n2a2) = 1

2n4
[exp(−n2) + n2 − 1]. (B.9)

Carrying out the standard Gaussian integrals over n, we get

IO(2,1)
HS,2 ∝ e− (2x+z)2

6

∫ ∞

0

dt√
1 + t

[
1

2
[(x − z)2(3t + 2)2 − 2] exp

(
− 1

12
(x − z)2(3t + 2)2

)

− exp

(
− 1

48
(x − z)2(3t + 2)2

)]
. (B.10)

The integral over t is divergent if x − z = 0, as expected, and in the limit |x − z| � 1 it is a
well-defined expression dominated by t ∼ (x − z)−1 � 1 so that IO(2,1)

HS,2 ∼ (x − z)−1/2. Such
a pre-exponential factor clearly precludes the expression to be in the desired Gaussian form.

Appendix C. Calculations for the standard case O(3)

In this appendix, we repeat calculations similar to those in section 2 and appendix B, but this
time for the compact case of O(3) group. Although the Hubbard–Stratonovich transformation
for O(3) symmetry is trivially valid in the original formulation, it is instructive to have a
comparison between O(3) and O(2, 1) in the polar representation, as it helps to understand
peculiarities of the non-compact case.

First, we consider an integral similar to equation (2.1), with integration of T̂ going this time
over O(3) instead of O(2, 1). We consider only the simplest case setting Â = diag(x, x, z)

and deal with the following integral:

I
O(3)
HS =

∫
DR̂ exp

(
−1

2
Tr R̂2 − iTr R̂Â

)

=
∫ ∞

−∞
DP̂ exp

(
−1

2

3∑
i=1

p2
i

)∫
G/H

dµ(Ŝ) e−iTrŜ−1P̂ ŜÂ, (C.1)
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where G = O(3) and H = O(2) × O(1). Elements of this compact coset is parameterized as

s = gH =
(

(1 + ZZT )−
1
2 Z(1 + ZT Z)−

1
2

ZT (1 + ZZT )−
1
2 (1 + ZT Z)−

1
2

)
, (C.2)

where we introduced the 2 × 1 real matrix Z as the convenient coordinate on G/H , with

Z =
(

z1

z2

)
, with z1 and z2 arbitrary real. (C.3)

Similar to the non-compact case, s−1(Z,ZT ) = s(−Z,−ZT ). The invariant measure dµ(Ŝ)

in the projective coordinates is given by

dµ(Ŝ) = dZ dZT

(1 + ZT Z)
3
2

, where dZ dZT = dz1 dz2. (C.4)

The integration over the coset is now straightforward and calculations are done parallel to
those in section 2. After some algebra and a few changes of variables, we get

I
O(3)
HS =

∫ 1

0

dt√
1 − t

∫ ∞

−∞
DP̂ exp

{
−1

2

3∑
i=1

p2
i + i(x(p1 + p2) + zp3)

+
it

2
(z − x)(p1 + p2 − 2p3)

}
J0

[
t

2
(x − z)(p1 − p2)

]
. (C.5)

The difference between equations (C.5) and (2.13) is due to the difference between compact
and non-compact integration manifolds.

A crucial difference in the O(3) case is that the volume elements DP̂ in the above formula
is DP̂ = |�(P̂ )|∏3

i=1 dpi , instead of equation (2.2). We have seen in appendix B that this
choice of DP̂ when applied for O(2, 1) symmetry would yield a form which is not Gaussian.
In the remaining part of this appendix we show that in the case of O(3) the result is in contrast
to Gaussian.

Define the same set of integration variables as equation (A.1) and use them in
equation (C.5). We have

IO(3)
HS = IO(3)

HS,1 + IO(3)
HS,2 , (C.6)

where we defined

IO(3)
HS,1 =

∫ 1

0

dt√
1 − t

∫ ∞

−∞
2|a|((b − c)2 − a2) da db dc

× exp

(
−a2 − b2 − c2

2
+ i(2xa + zc) − it (x − z)(a − c)

)
J0[t (x − z)a] (C.7)

and

IO(3)
HS,2 =

∫ 1

0

dt√
1 − t

∫ |b−c|

0
4|a|(a2 − (b − c)2) da

∫ ∞

−∞
db dc

× exp

(
−a2 − b2 − c2

2
+ i(2xa + zc) − it (x − z)(a − c)

)
J0[t (x − z)a]. (C.8)

Note again that IO(3)
HS,1 corresponds to the definition (2.2) and IO(3)

HS,2 emerges only because the
volume element is positive definite in the current case.

First, we deal with IO(3)
HS,1 . Carrying out simple Gaussian integrations over a, b and c we

find

IO(3)
HS,1 =

√
2π

32
F1(x, z) exp

(
−1

2
(2x2 + z2)

)
, (C.9)
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where

F1(x, z) =
∫ 1

0

dt√
1 − t

exp

(
−1

2
(t2 + t)(x − z)2

) [
1 − (x − z)2(2t2 + 3t + 1)

]
. (C.10)

Using a = (x − z)2 and y = √
1 − t we immediately see that

F1(a) =
∫ 1

0

dt√
1 − t

exp

(
−1

2
(t2 + t)(x − z)2

)
[1 − (x − z)2(2t2 − 3t + 1)]

=
∫ 1

0
dy exp

(
−a

2
(y4 − y2)

)
[1 − a(2y4 − y2)]

= 1 − lim
y→0

y exp

(
−ay2(y2 − 1)

2

)
= 1. (C.11)

Here, the integral over y is the same as that in equation (2.16) with different upper and lower
limits, but the result is the same. This completes our proof that IO(3)

HS,1 is indeed in the Gaussian

form. We also note there is certain kind of duality between IO(3)
HS,1 and IO(2,1)

HS .

As we know already, the integral IO(3)
HS is of the Gaussian form ∝ exp[−x2 − z2/2], and

we have just shown that the same holds for IO(3)
HS,1 ; the second terms IO(3)

HS,2 can then only be

either 0 or the same Gaussian form as IO(3)
HS,1 . To see which is the case, it is sufficient to consider

the same limit x → z as we did in appendix B. In the limit |x − z| � 1, we find

IO(3)
HS,2 =

∫ 1

0

dt√
1 − t

∫ |b−c|

0
4|a|(a2 − (b − c)2) da

∫ ∞

−∞
db dc

× exp

(
−a2 − b2 − c2

2
+ i(2xa + zc)

)
. (C.12)

One can perform all the integrations in this formula explicitly, and show that

IO(3)
HS,2 ∝ exp

{
−1

2
(2x2 + z2)

}
(C.13)

as expected.

Appendix D. Jacobian of the transformation from Z to polar coordinates

Write the polar coordinates decomposition in equation (3.5) as Z = O1�O2, where

� = (r 0
0 s

)
. We have{

dZ = dO1�O2 + O1d�O2 + O1� dO2

dZT = dOT
2 �O1 + OT

2 d�O1 + OT
2 � dO1.

(D.1)

Following the standard way of derivation, see e.g. [21], we have

d2S = Tr dZ dZT = Tr
{
OT

1 dO1�O2dOT
2 � + � d�O2dOT

2 + �2dO2dOT
2

+ OT
1 dO1� d� + d2� + � d� dO2O

T
2

+ �2dOT
1 dO1 + � d� dOT

1 O1 + � dO2O
T
2 � dOT

1 O1
}
. (D.2)

Next we define{
δO1 = OT

1 dO1

δO2 = dO2O
T
2 .

(D.3)
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Recalling that δO1 and δO2 are skew-symmetric matrices, they can be written as

δO1 =
(

0 δO1,12

−δO1,12 0

)
, δO2 =

(
0 δO2,12

−δO2,12 0

)
. (D.4)

We find

d2S = Tr{d2� − �2δO1δO1 − �2δO2δO2 − 2�δO1�δO2}

= (δO1,12, δO2,12, dr, ds)

⎛
⎜⎜⎝

r2 + s2 2rs

2rs r2 + s2

1
1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

δO1,12

δO2,12

dr

ds

⎞
⎟⎟⎠

= dxigij dxj . (D.5)

In the last step the summation over repeated indices is assumed. Jacobian is then given by

Jacobian =
√

det g = |r2 − s2|. (D.6)

Appendix E. Calculation with the alternative volume element DP̂ for the O(2, 2) case

In this appendix, we calculate equation (3.3) with the volume element DP̂ = |�[P̂ ]|∏4
i=1 dpi

used instead of equation (3.10). We show that by this choice the final result is not in the
Gaussian form, hence the corresponding Hubbard–Stratonovich transformation cannot be
valid.

First we redefine the integration variables⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a = 1
2 (p1 + p2)

b = 1
2 (p1 − p2)

c = 1
2 (p3 + p4)

d = 1
2 (p3 − p4).

(E.1)

Then we have

|�[P̂ ]| = 4|bd| · |[(a − c + d)2 − b2][(a − c − d)2 − b2]|. (E.2)

Use equation (3.9) and DP̂ defined above to find

IO(2,2)
HS =

∫ ∞

1

|u − v|du dv√
u(u − 1)

√
v(v − 1)

∫
DP̂ e−a2−b2−c2−d2+i(x−z)(a−c)(u+v)

× J0[b(x − z)(u − v)]J0[d(x − z)(u − v)]. (E.3)

As in appendix B we can split IO(2,2)
HS into two parts:

IO(2,2)
HS = IO(2,2)

HS,1 + IO(2,2)
HS,2 . (E.4)

Here, the contribution IO(2,2)
HS,1 is precisely I

O(2,2)
HS we calculated in section 3, and we know it

is in a Gaussian form. It is the second contribution, IO(2,2)
HS,2 , which arises from the difference

between the two definitions of DP̂ , and it is given by

IO(2,2)
HS,2 ∝

∫ ∞

−∞
da dc

∫ ∞

0
dd

∫ |a−c|+d

||a−c|−d|
db bd[(a − c + d)2 − b2][(a − c − d)2 − b2]

×
∫ ∞

1

|u − v|du dv√
u(u − 1)

√
v(v − 1)

e−a2−b2−c2−d2+2ixc+2iza+i(x−z)(a−c)(u+v)

× J0[b(x − z)(u − v)]J0[d(x − z)(u − v)]. (E.5)
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In the remaining part of this section we demonstrate that IO(2,2)
HS,2 is not in the Gaussian form,

thus IO(2,2)
HS is not either. Which means that the Hubbard–Stratonovich transformation fails

with this different choice of DP̂ .
First, we define m = a + c and n = a − c. It is clear that the integral over m is decoupled

from other integrations and can be easily performed. Again, it is sufficient to consider the
limit |x − z| � 1. For the same reason as in appendix B, we set the two Bessel terms to be 1
in this limit. We then have

IO(2,2)
HS,2 ∝ exp

{
−1

2
(x + z)2

}∫ ∞

0
dn

∫ ∞

0
dd

∫ n+d

|n−d|
db bd[(n + d)2 − b2][(n − d)2 − b2]

×
∫ ∞

1

|u − v|du dv√
u(u − 1)

√
v(v − 1)

exp{−n2 − b2 − d2} cos[n(x − z)(u + v − 1)]. (E.6)

The integral part of the above formula needs to be ∝ exp
{− 1

2 (x − z)2
}

in order to make

IO(2,2)
HS,2 Gaussian. The remaining calculations are lengthy but direct. We perform Gaussian-

type integrals over b, d and n then define new integration variables X = u + v − 1 and
Y = u − v. After integrating over Y we get

IO(2,2)
HS,2 ∝

∫ ∞

0
dX ln(2X + 1)

{
8 − 2a2X2 +

√
π exp

(
−a2X2

4

)
aX(a2X2 − 6)Erfi

[
aX

2

]}
,

(E.7)

where we defined a = x − z, and Erfi stands for the error function of imaginary argument.
Integrating by parts we bring the above integral to the form

IO(2,2)
HS,2 ∝

∫ ∞

0
dX

1

2X + 1

(
aX

4
−

√
π

8
exp

(
−a2X2

4

)
(a2X2 − 2)Erfi

[
aX

2

])
. (E.8)

Again, in the limit |x−z| � 1 the integral over X is dominated by the region X ∼ (x−z)−1 �
1. Changing variable aX → X and expanding in terms of |x − z|, we find to the lowest order,
IO(2,2)

HS,2 = c0 − |x − z|c1 + O((x − z)2), with c0 and c1 being some constants. In this way

one finds that IO(2,2)
HS,2 is a function of (x − z), but is clearly not in the Gaussian form. So we

conclude that IO(2,2)
HS is not Gaussian.
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[5] Pruisken A M M and Schäfer L 1982 Nucl. Phys. B 200 20
[6] Efetov K B 1983 Adv. Phys. 32 53
[7] Verbaarschot J J M, Weidenmüller H A and Zirnbauer M R 1985 Phys. Rep. 129 367
[8] Fyodorov Y V and Sommers H-J 1997 J. Math. Phys. 38 1918
[9] Verbaarschot J J M and Wettig T 2000 Annu. Rev. Nucl. Part. Sci. 50 343

[10] Mehta M-L 2004 Random Matrices 3rd edn (Amsterdam: Elsevier)
[11] Zirnbauer M R 2006 The supersymmetry method of random matrix theory Encyclopedia of Mathematical

Physics vol 5 (Amsterdam: Eslevier) pp 151–60 (Preprint math-ph/0404057)
[12] Zirnbauer M R 1996 J. Math. Phys. 37 4986
[13] Fyodorov Y V 2005 J. Phys: Cond. Mat. 17 S1915
[14] Zirnbauer M R 2004 Symmetry classes in random matrix theory Preprint math-ph/0404058
[15] Fyodorov Y V 2002 Nucl. Phys. B 621 643

http://dx.doi.org/10.1016/S0370-1573(99)00091-5
http://dx.doi.org/10.1007/BF01598751
http://dx.doi.org/10.1016/0550-3213(82)90056-6
http://dx.doi.org/10.1080/00018738300101531
http://dx.doi.org/10.1016/0370-1573(85)90070-5
http://dx.doi.org/10.1063/1.531919
http://dx.doi.org/10.1146/annurev.nucl.50.1.343
http://www.arxiv.org/abs/math-ph/0404057
http://dx.doi.org/10.1063/1.531675
http://dx.doi.org/10.1088/0953-8984/17/20/018
http://www.arxiv.org/abs/math-ph/0404058
http://dx.doi.org/10.1016/S0550-3213(01)00508-9


A conjecture on Hubbard–Stratonovich transformations for the Pruisken–Schäfer parameterizations 13605
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